The anisotropic structure of turbulence and its energy spectrum
G. E. Elsinga and |. Marusic

Citation: Physics of Fluids 28, 011701 (2016); doi: 10.1063/1.4939471

View online: http://dx.doi.org/10.1063/1.4939471

View Table of Contents: http://scitation.aip.org/content/aip/journal/pof2/28/1?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Turbulent structure at the midsection of an annular flow
Phys. Fluids 27, 105102 (2015); 10.1063/1.4932109

Influence of an anisotropic slip-length boundary condition on turbulent channel flow
Phys. Fluids 24, 055111 (2012); 10.1063/1.4719780

Vorticity spectra in high Reynolds nhumber anisotropic turbulence
Phys. Fluids 17, 088102 (2005); 10.1063/1.1989387

A model for the dissipation rate tensor in inhomogeneous and anisotropic turbulence
Phys. Fluids 16, 4053 (2004); 10.1063/1.1801392

Anisotropic fluctuations in turbulent shear flows
Phys. Fluids 16, 4135 (2004); 10.1063/1.1789546



http://scitation.aip.org/content/aip/journal/pof2?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1380577834/x01/AIP-PT/PoF_ArticleDL_092116/PTBG_instrument_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=G.+E.+Elsinga&option1=author
http://scitation.aip.org/search?value1=I.+Marusic&option1=author
http://scitation.aip.org/content/aip/journal/pof2?ver=pdfcov
http://dx.doi.org/10.1063/1.4939471
http://scitation.aip.org/content/aip/journal/pof2/28/1?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/27/10/10.1063/1.4932109?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/24/5/10.1063/1.4719780?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/17/8/10.1063/1.1989387?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/16/11/10.1063/1.1801392?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/16/11/10.1063/1.1789546?ver=pdfcov

PHYSICS OF FLUIDS 28, 011701 (2016)

The anisotropic structure of turbulence and its
energy spectrum

G. E. Elsinga’® and |. Marusic?

'Laboratory for Aero and Hydrodynamics, Delft University of Technology,
2628CA Delft, The Netherlands

2Department of Mechanical Engineering, The University of Melbourne,
Victoria 3010, Australia

The spectral energy distribution in turbulent flows is observed to follow a k'3 power

scaling, as originally predicted by Kolmogorov’s theory. However, the underlying
assumptions in Kolmogorov’s theory appear not to hold with most experimental and
numerical data showing evidence of small-scale anisotropy and significant direct
energy transfer between the large- and the small-scales. Here, we present a flow
structure that reconciles the k=/3 spectrum with small-scale universality, small-scale
anisotropy, and direct scale interactions. The flow structure is a shear layer, which
contains the small-scales of motion and is bounded by the large-scales. The aniso-
tropic shear layer reveals the expected scaling of the energy spectrum in nearly all
directions.

The phenomenology of turbulence involves fluid motion at a broad range of length scales. To-
gether these motions produce the density variations in interstellar gasses,'? disperse pollution in the
atmosphere,>* or increase wall friction, which can cause damage of artery tissue.® The accurate
modeling of these physical processes depends on how the turbulent scales interact in physical space
and their respective energies. Concerning the latter, the distribution of turbulent kinetic energy across
the scales, represented by their wavenumber k, has been shown to follow a k~/3 power scaling. This
—5/3rd power slope has been predicted from Kolmogorov’s theory’™ and is strongly supported from
measurements in various flows, %12 enforcing it as a defining property of turbulence. While the power
law itself seems confirmed, the initial assumptions made when deriving the power law, and indeed
our fundamental understanding of turbulence, are being challenged. The classical view involves a
gradual cascade of energy from the large towards decreasingly smaller scales, with isotropy existing
at the small-scales.'®!* However, studies indicate that these underlying assumptions in Kolmogorov’s
theory do not hold. That is, anisotropy of the small-scales is observed,'>'® and direct scale interactions
across the whole scale range exist with significant energy transfer to the small as well as the large
scales.!”! A revised conceptual picture of the turbulent motions in physical space is thus needed,
which, moreover, is consistent with the observed spectral scaling.

Here, we present a shear layer type flow structure that exhibits —5/3rd power scaling of its spectra
in nearly all directions. This shear layer structure demonstrates how small-scale universality, small-
scale anisotropy, and direct large-scale small-scale interaction can be consistent with the well-known
spectral scaling.

Attempts at comprehending important aspects of turbulent flow have traditionally been made
by introducing idealized flow models. Most of these models consist of a vortex of some sort,?’->?
which has been supported by observations of intense vorticity being predominantly concentrated
in tubes.?>?* While insightful in many ways, these single vortex models alone do not explain the
k=373 scaling of the energy spectrum E. For example, the Burgers vortex tube model gives E ~ k1,3
while the Burgers vortex layer yields E ~ k~2.%% Rather, refinements of such models have required
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introducing a random distribution of vortices of different sizes or shapes. Lundgren® was able to
achieve a k—/3 spectrum using a spiral vortex model, but to do so he assumed a continuous distribution
of self-similar structures at different stages of development (i.e., different sizes).>>?” The concept of
such an extended range of vortical structure sizes, however, conflicts with visualizations of vorticity
structures in high Reynolds number turbulence, which display vortices nominally of similar size and
non-uniformly distributed in space.'? Moreover, the large-scale intense vorticity in numerical simula-
tions appears to be blob-like and not self-similar to the tube-like small-scale vortices.’® Furthermore,
Yeung, Brasseur, and Wang'” found evidence of a strong and direct coupling between the large and the
small scales of motion in both physical and Fourier space, which is not accounted for in the mentioned
conceptual models. Therefore, describing turbulence by individual vortices seems overly simplified
and inaccurate. Rather, their spatial organization also needs to be taken into account.

Pirozzoli’’ considered the radial distribution of mean tangential velocity across vortex tubes in
homogeneous isotropic turbulence. The resulting tangential velocity profiles deviated from the Burg-
ers vortex tube model outside the vortex core, which again suggests the larger flow scales surrounding
a vortex are important. Furthermore, the profiles showed an r~2/3 decay with radial distance 7. As-
suming the velocity profiles are the same in all directions relative to the vortex, i.e., isotropy of the
small-scales, the k=>/3 scaling of the transverse spectrum was derived from the one-dimensional ve-
locity profile. However, the assumption of small-scale isotropy is questionable,'>!® as already pointed
out.

More recent work has highlighted the importance of shear layer structures in turbulence.
particular, such layers were argued to be dominant and universal features of small-scale turbulence
based on instantaneous flow visualizations and the average flow associated with the local strain field.*!
The strain field governs turbulence production via vorticity stretching, hence defining a natural basis
for studying turbulence. This strain field analysis revealed a shear layer coincident with stretched
vortices (as shown in Fig. 1), which was found universally across a variety of turbulent flows including
homogeneous isotropic turbulence and wall-bounded turbulence.>' Moreover, this shear layer struc-
ture was shown in Ref. 31 to preserve the main characteristics related to the velocity gradient tensor
in fully turbulent flows, notably the vorticity-intermediate strain alignment? and the teardrop shape
of the joint-pdf of the velocity gradient tensor invariants.>* In addition, the shear layer structure is
consistent with, and details, the observed non-uniform spatial distribution of vortices in turbulent
flow!23* and the anisotropy of the small-scales. Based on an evaluation of wall-bounded turbulence,
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FIG. 1. The average flow associated with the local principal strain field around the point marked by X. Three-dimensional
streamlines (blue) highlight a shear layer containing swirling motions that are being stretched in the direction of intermediate
principal strain A;. The shear layer plane is at 45° with the most stretching straining direction 4| and the most compressive
straining direction A3 and includes the A, direction. The size of the core of the layer scales on the Kolmogorov length 177,
while the outer region scales on the macro-length L.3
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the velocity field associated with this structure was, furthermore, shown to contain large and small
turbulent length scales simultaneously,* as summarized in Fig. 1.

Given its universal appearance and consistency with relevant small-scale phenomenology, the
shear layer structure obtained from the strain field analysis is a suitable model to represent turbulent
motions in a simplified way. Taking it as a representative flow structure, we wonder how it contributes
to the spectrum and whether the k=>/3 energy spectrum scaling is satisfied.

Therefore, we examine the spectral content of the mentioned shear layer structure, which was
derived from Direct Numerical Simulation (DNS) of homogeneous isotropic turbulence at two differ-
ent Reynolds numbers. The first DNS dataset is at Re, = 170 (courtesy of A. A. Wray, CTR 2002),
where Re, is the Reynolds number based on the Taylor micro-scale. It was computed using the same
numerical scheme as in Ref. 24. The second dataset at Re; = 433 is from the Johns Hopkins University
turbulence database.’® Then, for each Reynolds number, the layer structure was obtained following
the procedure introduced in Ref. 31. In this procedure, the fluctuating velocity field around a point is
interpolated onto a new grid aligned with the local principal straining directions in that point, referred
to as the strain eigenframe. These principal strain directions are given by the eigenvectors of the strain
rate tensor, which is the symmetric part of the velocity gradient tensor. When defining the strain eigen-
frame, the intermediate principal straining direction is taken such that its inner product with the local
vorticity vector is positive. These velocity fields on the strain eigenframe around individual points
are finally averaged considering all points within the flow. The result (Fig. 1) represents the average
three-dimensional flow velocity field around a point as seen when the observer is aligned with the
local strain field. We emphasize the structure is not weak, even if it is an average. The peak velocity
within the layer corresponds to 37%-58% of the root-mean-square velocity in the underlying turbulent
flow, consistent with data in Ref. 35. This peak velocity is attained at around 10 Kolmogorov length
scales from the center of the layer. As such, the present shear layer is an example of an intermittent,
and highly dissipative small-scale structure, which features in the universal scaling laws proposed
by She and Leveque.?” While intense dissipation was imagined to be filamentary in that paper, later
work showed the corresponding structure is actually pancake or sheet-like and is located adjacent
to the vortex filaments.>*383 Such sheet-like dissipation with neighboring vortical motion is again
consistent with the present layer (Fig. 1), as discussed also in Ref. 31. Moreover, the present shear
layer structure is persistent, which can be seen from the non-dimensional time scale 7" derived from
the vorticity equation,

-1
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Here, w is the vorticity vector, A is the velocity gradient tensor, and v is the kinematic viscosity. At the
center of the layer, T is of order 100. The large value of T indicates an approximate balance between
production and dissipation of vorticity, which causes the material derivative of vorticity to be small
in comparison to the vorticity magnitude. Hence, the shear layer flow is not perfectly steady, but its
dynamics are very slow. In other words, the structure is persistent.

To obtain the longitudinal spectrum associated with the shear layer structure, velocity profiles are
taken along lines intersecting the layer at the point of averaging, i.e., the origin of the strain eigenframe
(Fig. 2(a)). From these profiles, the energy spectrum is computed for the velocity component parallel
to each line of intersection. Here, we simply consider the spectrum of the layer structure itself, which
demonstrates how such a structure contributes to the spectrum of a turbulent flow. The approach is
different to the spectral theory of Hunt et al.,>° which involves other additional structures impacting on
and departing from the shear layer. In an isotropic turbulent flow that consists of many layer structures,
each layer structure can have any orientation relative to the fixed world coordinates and consequently
the longitudinal energy spectrum is averaged over all possible directions of intersection. However, in
anisotropic flow, the structure will have a preferential orientation and therefore a fixed observer will
probe it mainly along selected directions. This effect is simulated by considering only the intersections
within a particular range of directions when averaging the spectrum. The different directional ranges
used are partially overlapping and indicated in Fig. 2(a) by the colors on a unit sphere centered on
the origin of the strain eigenframe. We have chosen finite size ranges, as opposed to spectra along
individual lines of intersection, mainly to allow for certain (yet limited) randomness in the orientation

T = |l
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FIG. 2. Energy spectra taken along different directions through the average shear layer structure. (a) The spectrum is obtained
along each colored line through the center of the layer, i.e., the origin of the strain eigenframe (1}, A2, 13). The colors indicate
the different directional ranges over which the spectra are subsequently averaged. Each directional range describes a cone
with a 40° half top angle. The cone axis’ azimuthal, 6, and elevation angle, ¢, with respect to the 2;-A3 plane are listed
in the legend. The orientation of the shear layer is shown by the grey plane for reference. (b) and (c) The resulting energy
spectra E(k), pre-multiplied by k3/3, are plotted against wavenumber k normalized by the Kolmogorov length scale 77. This
way a plateau corresponds to a k /3 scaling range in the energy spectra. (b) is for Re; = 170 while (c) represents Re ; = 433.
Furthermore, the pre-multiplied spectra are normalized to unity at k77 = 0.1 to provide a straightforward comparison of the
slopes. The color-coding corresponds to the directions in (a). The isotropic case, considering all directions in the averaging,
is shown in black without symbols, while the actual turbulence spectrum is given in black with symbols. The k /3 scaling
range in the average shear layer and actual turbulence are found to overlap.

of the structure within the flow, and second to reduce numerical wiggles in the spectra associated with
computing them from discretized velocity fields.

The resulting spectra at both Re; (Figs. 2(b)-2(c)) reveal a k=’ 3 scaling for the isotropic case as
well as for most anisotropic cases, i.e., along most directions of intersection. Moreover, the wavenum-
ber range for which this scaling holds is the same as for the actual turbulent flow. In anisotropic flows
like boundary and mixing layers, an approximate statistical alignment of the shear layers with the
mean flow is expected. It is, therefore, particularly significant that a k=>/3 scaling is found along the
shear layer structure (purple, color label 7). This demonstrates that such a turbulent structure can yield
either a mean shear flow or an isotropic flow while maintaining a k=3 spectrum at the same time. A
single, arguably universal,’! flow structure may thus explain both kinds of turbulent flow.

Notable exceptions to a k~>/ scaling are the spectra in the direction of intermediate principal
strain and the most stretching strain. They, respectively, show a larger and a smaller relative contri-
bution of the small wavenumbers. Furthermore, at high wavenumbers, beyond the k=>/3 range, the
spectra for the layer structure drop faster than the true turbulent spectrum, which is due to the aver-
aging procedure used to obtain the layer structure. The corresponding difference in flow velocity at
these scales remains small, as shown next.

In order to address the spectral differences at large wavenumbers, k>10"!, we consider the
longitudinal velocity profiles along the same lines of intersection used to determine the spectra.
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FIG. 3. Comparison of reconstructed longitudinal velocity profiles associated with the turbulence spectrum (black) and the
shear layer spectrum averaged over all directions (gray). These velocity profiles were obtained from an inverse sine transform
of the respective spectra. All sine waves were taken compressive and in-phase at the origin, which allows a further comparison
with the actual velocity profile across the layer in the direction of the most compressive strain A3 (red). All profiles were
normalized by their peak value.

The distance to the origin along such a line is denoted by s and the corresponding longitudinal
component of velocity, i.e., the component in the direction of s, is given by u,. The present average
flow pattern associated with the local strain field has a 180° rotational symmetry due to the sym-
metry of the strain rate tensor on which it is based. Therefore, the longitudinal velocity profiles
satisfy uy(s) = —us(—s) and can be represented by a discrete sine transform around the origin.
Then to reconstruct the velocity profiles associated with the kinetic energy spectra, an inverse sine
transform is performed using the spectral energy distributions at Re,; = 170 presented in Fig. 2(b).
All waves are assumed in-phase at the origin. Figure 3 compares the reconstructed longitudinal
velocity profiles based on the actual turbulence spectrum (black line) and the shear layer spectrum
averaged over all directions (gray line). The latter is taken as representative of the different shear
layer spectra, which overlap with the turbulence spectrum in the k /3 range while deviating at larger
wavenumbers, kn>10"" (Fig. 2(b)). Overall the comparison reveals very similar velocity profiles,
though the location of the peak velocity is observed to shift slightly from s/n = 10 to 12. The shift
clearly is smaller than the width of the present shear layer and the intense vortical structures in a
turbulent flow, which are 6-107 in diameter.>**’ The same analysis was repeated using the spectra
at Re, = 433 (Fig. 2(c)), which yielded similar results. Therefore, we conclude that the observed
spectral differences at large wavenumber have only a minor effect on the velocity profiles, and
that the small-scales of motion inside the shear layer are well represented. Here, we define the
small-scales of motion as the size of the smallest vortical motions within the turbulent flow (i.e.,
6-107°440). Even smaller scales (<6n) still contribute to dissipation, but do not create an independent
coherent motion. That means, the velocity gradients within the shear layer structure may be under-
estimated (due to averaging), but the flow structure/motion itself is well represented as shown in
Figure 3.

When computing the reconstructed longitudinal velocity profiles from the spectra (Fig. 3), it was
assumed that all sine waves are in-phase at the origin, i.e., the center of the shear layer. This assumption
can be validated by comparing the reconstructed profiles with a velocity profile taken directly from the
velocity field of the shear layer structure. Here, we consider the velocity profile along the direction of
the most compressive strain, A3, which was shown to exhibit a k=/3 range in its associated spectrum
(Fig. 2(b)). This velocity profile compares favorably with the profile reconstructed from the shear
layer spectrum (Fig. 3, compare red and gray lines). Therefore, it is concluded that the assumption is
appropriate and that the waves appear in phase at the origin. We interpret this as a further evidence
for a direct interaction between the waves within the shear layer.
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Approximating the shear layer as a jump in velocity, we can infer from Fourier analysis that
the spatial waves, which decompose this jump, cover the full range of scales and will be in phase
at the location of the jump. This implies that these waves interact in physical space at the location
of the jumps or layers, which is in line with the above results. The direct scale interaction can also
be explained in a different way. The nearly uniform velocity on each side of the shear layer, hence
the velocity difference across the layer, is set by the large-scale motions outside the layer (Fig. 1).
These outer motions correspond to the long tails in the velocity profiles (s/n < —12 and s/ > 121in
Fig. 3), whose length scales with the macroscopic length scale of the flow.?> Therefore, a change in
the velocity of the large-scale outer motions directly affects the velocity difference across the layer,
which is, in fact, the velocity associated with the small-scales of motion contained inside the shear
layer (Fig. 1). So there is a direct interaction between the scales.

In summary, the shear layer model contains all relevant turbulent length scales with relative
amplitudes consistent with the well-known k~>/3 energy spectrum scaling in actual turbulent flow.
Moreover, the k'3 spectrum scaling appeared when considering isotropic as well as anisotropic flow
conditions, i.e., in isotropic and most of the anisotropic intersections of the layer. This is an important
result, as the small-scales have been shown to remain anisotropic in high Reynolds number shear
flow.'> Furthermore, all spectral waves are in phase at the center of the shear layer, which we interpret
as evidence for a direct interaction between the waves at that location. It presents a physical mecha-
nism for the strong, direct coupling and energy transfer between scales observed in turbulent flow.!”
Additionally, the present shear layer structure was already shown to appear universally in different
turbulent flows.?! Hence, our results show how small-scale universality, small-scale anisotropy, and
direct scale interaction can be reconciled with the k=3 spectrum. The small scales of turbulent motion
thus need not be isotropic and independent of the large scales to produce this spectral scaling, as is
classically assumed.
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